Reads neural network parameters (weights, biases, activation functions) from output files generated by an optimized training process and constructs a complete model object.
Value
Returns an object of class ccModel containing:
Bias- List of bias matrices for each layerTheta- List of weight matrices for each layerActivation- List of activation functions for each layerDepth- Integer specifying the number of layersModel_type- The input model typeArchitecture- The input architecture description
Details
This function reads the following files from the specified directory:
Activations.csv- Contains activation function names (one per line)Bias{i}.csv- Bias values for layer i (where i = 1, 2, ...)Theta{i}.csv- Weight values for layer i (where i = 1, 2, ...)
The function automatically determines the network depth from the number of activation functions and loads the corresponding parameters for each layer. All CSV files are expected to be comma-separated without row names.
References
Johnson TS, Yu CY, Huang Z, Xu S, Wang T, Dong C, et al. Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease. Genome Med. 2022 Feb 1;14(1):11.
See also
Other DEGAS:
DoDEGAS(),
LabelBinaryCells(),
LabelContinuousCells(),
LabelSurvivalCells(),
Vec2sparse(),
predClassBag.optimized(),
runCCMTL.optimized(),
runCCMTLBag.optimized(),
writeInputFiles.optimized()