These functions provide access to components of breg
objects, serving as counterparts
to the br_set_*()
functions. Some functions include additional arguments for extended
functionality.
Usage
br_get_data(obj)
br_get_y(obj)
br_get_x(obj)
br_get_n_x(obj)
br_get_x2(obj)
br_get_n_x2(obj)
br_get_group_by(obj)
br_get_config(obj)
br_get_models(obj)
br_get_model(obj, idx)
br_get_results(obj, tidy = FALSE, ...)
Arguments
- obj
A
breg
object.- idx
Index or names (focal variables) of the model(s) to return.
- tidy
If
TRUE
return tidy (compact) results, otherwise return comprehensive results. The tidy results are obtained frombroom::tidy()
while comprehensive results are obtained frombroom.helpers::tidy_plus_plus()
. The results can be configured when run withbr_run()
.- ...
Subset operations passing to
dplyr::filter()
to filter results.
Value
Output depends on the function called:
br_get_data()
returns adata.frame
.br_get_y()
,br_get_x()
,br_get_x2()
return modeling terms.br_get_n_x()
andbr_get_n_x2()
return the length of termsx
andx2
.br_get_group_by()
returns variable(s) for group analysis.br_get_config()
returns modeling method and extra arguments.br_get_models()
returns all constructed models.br_get_model()
returns a subset of constructed models.br_get_results()
returns modeling resultdata.frame
.
See also
pipeline for building breg
objects.
Examples
m <- br_pipeline(mtcars,
y = "mpg",
x = colnames(mtcars)[2:4],
x2 = "vs",
method = "gaussian"
)
br_get_data(m)
#> # A tibble: 32 × 12
#> .row_names mpg cyl disp hp drat wt qsec vs am gear carb
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 Mazda RX4 … 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 Hornet 4 D… 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 Hornet Spo… 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 Duster 360 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ℹ 22 more rows
br_get_y(m)
#> [1] "mpg"
br_get_x(m)
#> [1] "cyl" "disp" "hp"
br_get_n_x(m)
#> [1] 3
br_get_x2(m)
#> [1] "vs"
br_get_n_x2(m)
#> [1] 1
br_get_group_by(m)
#> NULL
br_get_config(m)
#> $method
#> [1] "gaussian"
#>
#> $extra
#> [1] ""
#>
br_get_models(m)
#> $cyl
#>
#> Call: stats::glm(formula = mpg ~ cyl + vs, family = gaussian, data = data)
#>
#> Coefficients:
#> (Intercept) cyl vs
#> 39.6250 -3.0907 -0.9391
#>
#> Degrees of Freedom: 31 Total (i.e. Null); 29 Residual
#> Null Deviance: 1126
#> Residual Deviance: 306 AIC: 171.1
#>
#> $disp
#>
#> Call: stats::glm(formula = mpg ~ disp + vs, family = gaussian, data = data)
#>
#> Coefficients:
#> (Intercept) disp vs
#> 27.9493 -0.0369 1.4950
#>
#> Degrees of Freedom: 31 Total (i.e. Null); 29 Residual
#> Null Deviance: 1126
#> Residual Deviance: 308.4 AIC: 171.3
#>
#> $hp
#>
#> Call: stats::glm(formula = mpg ~ hp + vs, family = gaussian, data = data)
#>
#> Coefficients:
#> (Intercept) hp vs
#> 26.96300 -0.05453 2.57622
#>
#> Degrees of Freedom: 31 Total (i.e. Null); 29 Residual
#> Null Deviance: 1126
#> Residual Deviance: 422.7 AIC: 181.4
#>
br_get_model(m, 1)
#>
#> Call: stats::glm(formula = mpg ~ cyl + vs, family = gaussian, data = data)
#>
#> Coefficients:
#> (Intercept) cyl vs
#> 39.6250 -3.0907 -0.9391
#>
#> Degrees of Freedom: 31 Total (i.e. Null); 29 Residual
#> Null Deviance: 1126
#> Residual Deviance: 306 AIC: 171.1
br_get_n_x2(m)
#> [1] 1
br_get_results(m)
#> # A tibble: 6 × 18
#> Focal_variable term variable var_label var_class var_type var_nlevels
#> <chr> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 cyl cyl cyl cyl numeric continuous NA
#> 2 cyl vs vs vs numeric continuous NA
#> 3 disp disp disp disp numeric continuous NA
#> 4 disp vs vs vs numeric continuous NA
#> 5 hp hp hp hp numeric continuous NA
#> 6 hp vs vs vs numeric continuous NA
#> # ℹ 11 more variables: contrasts <chr>, contrasts_type <chr>,
#> # reference_row <lgl>, label <chr>, n_obs <dbl>, estimate <dbl>,
#> # std.error <dbl>, statistic <dbl>, p.value <dbl>, conf.low <dbl>,
#> # conf.high <dbl>
br_get_results(m, tidy = TRUE)
#> # A tibble: 6 × 8
#> Focal_variable term estimate std.error statistic p.value conf.low conf.high
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 cyl cyl -3.09 0.558 -5.54 5.70e-6 -4.18 -2.00
#> 2 cyl vs -0.939 1.98 -0.475 6.38e-1 -4.81 2.94
#> 3 disp disp -0.0369 0.00672 -5.49 6.43e-6 -0.0501 -0.0237
#> 4 disp vs 1.50 1.65 0.905 3.73e-1 -1.74 4.73
#> 5 hp hp -0.0545 0.0145 -3.77 7.52e-4 -0.0829 -0.0262
#> 6 hp vs 2.58 1.97 1.31 2.01e-1 -1.28 6.44
br_get_results(m, tidy = TRUE, term == "cyl")
#> # A tibble: 1 × 8
#> Focal_variable term estimate std.error statistic p.value conf.low conf.high
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 cyl cyl -3.09 0.558 -5.54 5.70e-6 -4.18 -2.00